7. Dragon ADR Position Set¶
ADR - Architecture Design Records
7.1. Problem¶
Set new position to x=10, y=20
7.2. Option 1¶
>>> dragon.fly(10, 20)
>>> dragon.teleport(10, 20)
Pros and Cons:
Good: easy to use
Good: encapsulation
Good: easy to add validation if needed
Good: easy to extend to 3D - add parameter with default value
0
Bad: method names are too use-case specific
Bad: arguments are implicit, require knowledge of an API what are the values provided as arguments
Decision: rejected, too use-case specific names
Problem:
>>> dragon.fly(10, 20) # does the same, but different name
>>> hero.walk(10, 20) # does the same, but different name
>>> snake.slide(10, 20) # does the same, but different name
Use Cases:
>>> locmem.store()
>>> locmem.retrieve()
>>> database.insert()
>>> database.select()
>>> filesystem.write()
>>> filesystem.read()
7.3. Option 2¶
>>> dragon.set_position(10, 20)
Pros and Cons:
Good: easy to use
Good: encapsulation
Good: easy to add validation if needed
Good: easy to extend to 3D - add parameter with default value
0
Bad: arguments are implicit, require knowledge of an API what are the values provided as arguments
Decision: maybe, could be done better
7.4. Option 3¶
>>> dragon.set_position_xy(10, 20)
Pros and Cons:
Good: verbose
Good: does not require knowledge of an API what are the values provided as arguments
Good: easy to use
Good: encapsulation
Good: easy to add validation if needed
Bad: name
set_position_xy()
ties to 2D pointDecision: rejected, ties to 2D point
Problem:
>>> dragon.set_position_xy(10, 20)
>>> dragon.set_position_xyz(10, 20, 30)
7.5. Option 4¶
>>> dragon.set_position(x=10, y=20)
Pros and Cons:
Good: easy to use
Good: arguments are explicit
Good: encapsulation
Good: easy to add validation if needed
Good: easy to extend to 3D - add parameter with default value
0
Decision: candidate
Example:
>>> dragon.set_position(x=10, y=20)
>>> dragon.set_position(x=10, y=20, z=30)
7.6. Option 5¶
>>> dragon.set(position_x=10, position_y=20)
Pros and Cons:
Good: easy to use
Good: arguments are explicit
Good: easy to add validation if needed
Bad:
set()
is too generic and allows for abuseBad: encapsulation is in question
Decision: rejected, possibility of abuse
Problem:
>>> dragon.set(position_x=10, position_y=20)
>>> dragon.set(health=50)
>>> dragon.set(gold=100)
>>> dragon.set(damage=10)
>>> dragon.set(name='Wawelski')
7.7. Option 6¶
>>> dragon.position_x = 10
>>> dragon.position_y = 20
>>> dragon.position_x, dragon.position_y = 10, 20
Pros and Cons:
Good: easy to use
Good: arguments are explicit
Good: can use
@property
for validation if neededBad: violates abstraction (OOP Principle)
Bad: violates encapsulation (OOP Principle)
Bad: violates Tell, Don't Ask (OOP Principle)
Decision: rejected, violates OOP principles
Problem:
>>> knn = KNearestNeighbors()
>>> knn.k = 3
>>> knn = KNearestNeighbors()
>>> knn.k = 3
7.8. Option 7¶
>>> dragon.position.x = 10
>>> dragon.position.y = 20
>>> dragon.position.x, dragon.position.y = 10, 20
Pros and Cons:
Good: more or less easy to use (Simple is better than complex)
Good: arguments are explicit
Good: can use
@property
for validation if neededGood: namespace
Good: more or less readable (Readability counts)
Good: extensible, easy to refactor to 3D
Bad: violates encapsulation - OOP good practices
Bad: flat is better than nested (PEP 20)
Bad: require knowledge of an API
Bad: violates abstraction (OOP Principle)
Bad: violates encapsulation (OOP Principle)
Bad: violates Tell, Don't Ask (OOP Principle)
Decision: rejected, violates OOP principles and Python convention (PEP 20)
Problem:
>>> knn = KNearestNeighbors()
>>> knn.params.k = 3
>>> knn.params.w = [1, 2, 3]
7.9. Option 8¶
>>> dragon.position = (10, 20)
Pros and Cons:
Good: easy to use
Good: can use
@property
for validation if neededBad: arguments are implicit
Bad: require knowledge of an API
Bad: always 2D
Bad: not extensible, hard to refactor to 3D
Bad: violates abstraction (OOP Principle)
Bad: violates encapsulation (OOP Principle)
Bad: violates Tell, Don't Ask (OOP Principle)
Decision: rejected, violates OOP principles
Problem:
>>> knn = KNearestNeighbors()
>>> knn.args = (3, [1, 2, 3])
>>> model.predict()
(0.9712637, [1.123123, 2.123123, 3.123123], 1.17823)
>>> (score, coef_, c) = model.predict()
7.10. Option 9¶
>>> dragon.position = Position(x=10, y=20)
Pros and Cons:
Good: easy to use
Good: can use
@property
for validation if neededGood: arguments are explicit
Good: readability
Bad: require knowledge of an API
Bad: extensible, easy to refactor to 3D
Bad: violates abstraction (OOP Principle)
Bad: violates encapsulation (OOP Principle)
Bad: violates Tell, Don't Ask (OOP Principle)
Decision: rejected, violates OOP principles
Problem:
>>> knn = KNearestNeighbors()
>>> knn.args = Params(k=3, w=[1, 2, 3])
7.11. Option 10¶
>>> dragon.position @ Position(x=10, y=20)
Pros and Cons:
Good: easy to use
Good: using
@
(matmul) it is easy to validationBad:
@
(at) makes sense only in EnglishBad: arguments are implicit
Bad: require knowledge of an API
Bad: always 2D
Bad: not extensible, hard to refactor to 3D
Bad: violates abstraction (OOP Principle)
Bad: violates encapsulation (OOP Principle)
Bad: violates Tell, Don't Ask (OOP Principle)
Decision: rejected, violates OOP principles, misleading for non-English speakers
Problem:
>>> knn = KNearestNeighbors()
>>> knn << Params(k=3, w=[1, 2, 3])
7.12. Decision¶
>>> class Dragon:
... def set_position(self, *, x: int, y: int) -> None:
... ...
>>>
>>>
>>> dragon.set_position(x=10, y=20)
Pros and Cons:
Good: easy to use
Good: arguments are explicit
Good: provides encapsulation
Good: easy to add validation if needed
Good: extensible, easy to refactor to 3D